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Abstract

Computational models have shown that purely statistical knowledge about words’ linguistic
contexts is sufficient to learn many properties of words, including syntactic and semantic
category. For example, models can infer that “postman” and “mailman” are semantically similar
because they have quantitatively similar patterns of association with other words (e.g., they both
tend to occur with words like “deliver”, “truck”, “package”). Contra these computational results,
artificial language learning experiments suggest that distributional statistics alone do not facilitate
learning of linguistic categories. However, experiments in this paradigm expose participants to
entirely novel words, whereas real language learners encounter input that contains some known
words that are semantically organized. In three experiments, we show that (1) the presence of
familiar semantic reference points facilitates distributional learning and (2) this effect crucially
depends both on the presence of known words and the adherence of these known words to some
semantic organization.
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Semantic coherence facilitates distributional learning

1 Introduction

“You shall know a word by the company it keeps.” Firth (1957, p.11)

How do people learn language? Learners use many information sources, including physical,
social, conceptual, and linguistic cues (Baldwin, |1993; [E. V. Clark, |1988; \Gleitman, |1990;
Hollich, Hirsh-Pasek, & Golinkoff, 2000; [Markman, [1991). But in addition to external sources of
information, the distributional properties of language itself can be informative about both its
structure and meaning. A wide variety of experiments show that learners are sensitive to these
distributional properties. For example, learners can group sounds together into word forms based
on their statistical co-occurrence (Saffran, Aslin, & Newport, [1996; Saffran, Newport, & Aslin,
1996)) and pair word forms with their referents based on consistent associations (L. Smith & Yu,
2008; |Yu & Ballard, 2007). In the current paper, we explore a more sophisticated type of
distributional learning: learning about a word using evidence about the linguistic contexts that it
occurs (Braine, 1987; [Maratsos & Chalkley, |1980; Redington, Chater, & Finch, |1998;

K. H. Smith| [1966).

As an example of distributional learning, one might infer that “postman” and “mailman”
have similar meanings or are similar parts of speech based solely on the fact that they both tend to
occur with words like “deliver”, “package”, and “truck” in comparable configurations and
frequencies. To give an intuition in a different domain, we might judge whether two people are
similar based on their patterns of association with other people. If we know that Alice associates
with professors and college sophomores and that Bob associates with accountants and lawyers,
we might judge that they are dissimilar. For words, this kind of learning is driven not by direct
co-occurrence between two words of interest but rather by the similarity in their linguistic
contexts—their patterns of co-occurrence with other words. As Firth|(1957) noted, you can learn
a lot about a word “by the company it keeps” (p.11). We will refer to learning from such evidence

as distributional learning.
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Distributional learning is a general mechanism thought to be important throughout language
learning, including acquisition of word meaning (Landauer & Dumais, [1997) and grammatical
category (Redington et al., [1998). Nevertheless, a number of experiments, conducted mainly on
acquisition of grammatical category, suggest that human learners’ capacities are limited in this
regard (Braine, |1987; |Brooks, Braine, Catalano, Brody, & Sudhalter, 1993} Frank & Gibson,
2011} |Frigo & McDonald, [1998;; Gerken, Wilson, & Lewis, 2005; Kempe & Brooks|, 2001). Our
study addresses this mismatch by attempting to isolate conditions under which people succeed in

distributional learning.

We focus here on the effects of existing linguistic knowledge on distributional learning.
Prior experiments typically exposed learners to artificial languages composed of entirely novel
words. Our experiments, which we view as part of of a recent trend to address mismatches
between artificial language learning studies and natural language, suggest that semantic
coherence, the presence of known words adhering to some semantic organization, facilitates
distributional learning. Put another way, a small semantic hook allows people to better leverage
distributional information for learning. Phrased in terms of the Alice-Bob example, we stand a
better chance of learning about Alice from her associates if those associates play roles that are
already meaningful to us. Knowing that Alice associates with professors and college sophomores
gives us a clearer picture of her than, say, knowing that she associates with taphonomists and

bryologistsE] Learning a word from its company is easier if this company is already familiar.

We begin by briefly reviewing some of the computational evidence for distributional
learning. We then introduce the specific language structure, MNPQ, that we explore in this paper.
Next, we discuss research that uses the MNPQ structure to study distributional learning of
grammatical categories. In Experiments 1a and 1b, we present evidence that semantic coherence
can facilitate distributional learning and that learners make use of acquired distributional

information when performing an online referent assignment task. In Experiments 2 and 3, we

'Though, we can infer much more about Alice if we know that taphonomy is the study of decay and fossilization

and that bryology is the study of certain plants called bryophytes, which include mosses, hornworts, and liverworts.
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further explore this effect by isolating two components of semantic coherence—familiarity of
words and presence of an overarching semantic organization—and find that neither alone
facilitates learning. We conclude by discussing the limitations of purely artificial language
learning, possibilities for future empirical and computational work, and potential mechanisms for

the effects we observe.

1.1 Computational evidence for distributional learning

Initial proposals about distributional learning came from philosophical and linguistic
research on the nature of meaning. In the philosophical literature, Wittgenstein! (1953/1997)
objected to the idea that words have precise, formal definitions and argued that meaning derives
from patterns of usage. To illustrate, he considered the word “game”—a term used to describe
activies as varied as chess, poker, basketball, the Olympics and so forth—and observed that these
activities lack a shared essence that we could distill to a definition. To use a spatial metaphor, the
set of things called games does not appear to be a contiguous region that we could draw a
boundary for, but rather a “complicated network of similarities overlapping and crisscrossing”
(§66). Wittgenstein argued that understanding meaning requires describing usage.

In linguistics, [Firth (1957) similarly argued for a theory of meaning based on patterns of
“habitual collocation.” For example (p.12), he asserts that part of the meaning of the “cow” is its
co-occurrence with “milk,” as in “They are milking the cows” or “Cows give milk.” “Tigress” and
“lioness” do not co-occur with “milk™ as often and thus must differ somewhat in meaning. Firth
stressed the utility of pure co-occurrence independent of extralinguistic or even grammatical
aspects. He even outlined a prescient kind of cluster analysis quite similar to modern-day

statistical approaches:

“In the study of selected words, compounds and phrases in a restricted language for
which there are restricted texts, an exhaustive collection of collocation will suggest a
small number of groups of collocations for each word studied. The next step is the

choice of definitions for meanings suggested by the groups” (p. 13)
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Firth’s contemporary Harris advanced a quantitative version of this notion called the
distributional hypothesis, which proposes that words are semantically similar to the degree that
they participate in the same contexts (Harris, [1951). Harris argued that, even in cases where word
meaning was determined by extralinguistic influences, such influences would have distributional
correlates. Thus, meaning could be divined by the quantitative analysis of purely linguistic

information.

These proposals about the distributional theory of meaning stimulated early empirical work
with humans, which typically supported the distributional hypothesis using small samples of
human judgments and corpora (Berry-Rogghe, [1973; H. Clark, |1968; Geffroy, Lafon, Seidel, &
Tournier, |1973; Rubenstein & Goodenough, 1965; Stetfire & Reich, 19715 |Szalay & Bryson,
19°74). For example, Rubenstein and Goodenough| (1965) compared synonym judgments for pairs
of concrete nouns generated by one group of subjects with co-occurrence statistics in a corpus
generated by a separate group of subjects. They found a positive relationship between synonymy

and degree of linguistic context match.

In the 1980s, computer scientists devised techniques that paved the way for large scale
investigations of distributional learning. Motivated by practical issues in the field of information
retrieval, they considered the relationships between words and documents. A typical problem was
to retrieve documents relevant to a user query with certain search terms (i.e., a search engine).
One solution to this problem is to represent documents as points in a high dimensional space
whose dimensions are frequencies for different words (Salton & McGill, [1983). This approach
lends itself quite naturally to a matrix representation with words labeling rows, documents
labeling columns, and cells encoding how often a particular word occurs in a particular document
(Fig. [T). While we can interpret such matrices as representing documents in terms of their
component words, we can also interpret them representing words in terms of their frequency of
use across different documents (a useful form for distributional learning). To make an analogy
with our Alice-Bob example, such word-document matrices license inferences about Alice and

Bob based on where they appear (rather than who they appear with).
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Fig. 1. Word-document and word-word matrices. Word-document matrices measure how often
words occur in particular documents. Word-word matrices measure how often pairs of words
occur in certain relative positions (e.g., the cell in the third row and fourth column of the

word-word matrix indicates that “b” occurred before “c” once in the corpus).

Note, however, that this representation discards information about the relative position of
words within documents. The word-word approach retains this information (Church & Hanks,
1990; |Schiitze, [1992), labeling both rows and columns with words; a row might represent the
meaning of word A and the count in a particular column might indicate frequency that word A
occurred 2 words before word X (Fig. [I). This corresponds to the initial example of inferences

about Alice and Bob based on who they appear with.

Computational models operating on such co-occurrence representations can acquire both

semantic and syntactic properties of words. In the domain of semantics, |Landauer and Dumais
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(1997) built a word-document matrix from a corpus of encyclopedia articles, applied a
dimensionality reduction technique (singular value decomposition), and computed the similarity
between words using a cosine measure. This Latent Semantic Analysis model (LSA) was able to
pass a TOEFL synonym test successfully. In the domain of syntax, Redington et al.| (1998)
developed a model that performs hierarchical clustering on a word-word matrix to that
successfully acquires grammatical categories like noun, verb, and adjective. In fact, these results
suggest that co-occurrence statistics may be particularly powerful, offering leverage on many
kinds of linguistic information. Although devised to learn grammatical categories, the model
often learned clusters that had semantic organization. For example, in the cluster of adjectives,
color words and number words formed separate clusters (p448).

The success of this early computational work led to a proliferation of models that learn
from co-occurrence statistics (see Riordan & Jones, 2010 for an overview and comparison of
state-of-the-art models). The computational evidence is quite suggestive: In principle, statistical
patterns of co-occurrence can facilitate learning. This work is only indirect evidence of the utility
of distributional learning for language learners, however. Researchers studying acquisition of
grammatical categories have employed methods that can in principle provide stronger evidence.
These studies expose learners to artificial languages with certain co-occurrence regularities and
measure whether learners form categories on the basis of these regularities. In the next section,
we discuss results of studies that have examined one co-occurrence structure called the MNPQ

language.

1.2 A puzzle: the MNPQ language

The MNPQ language contains four categories of words, M (which includes m4, ms, and
ms), N (n1, ng, n3), P (p1, p2, p3), and Q (g1, g2, g3). Participants hear two types of training
sentencef]: MN and PQ. Thus, sentences like mn3 are grammatical while sentences like g3

2 We use the term “sentence” following its meaning in formal language theory, where it refers to a sequence of
symbols derived from a formal gramar. The sentences we examine in our work are clearly impoverished relative to

real sentences found in natural languages.
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are illegal. Early investigations (Braine, |1966; K. H. Smith, 1966)) found that participants tend to
endorse novel grammatical sentences as familiar. However, participants also endorse
ungrammatical MQ and PN sentences, suggesting that they learn position regularities (that M/P
come first and N/Q come second) but not co-occurrence regularities (that M co-occurs with N but
not Q and that P occurs with Q but not N). This failure to learn categories on the basis of pure
co-occurrence has been reliably observed in a number of studies (Braine, 1987} |Brooks et al.,
1993} |[Frank & Gibson, 2011} Frigo & McDonald, 1998; Gerken et al., 2005; Kempe & Brooks,
2001; |Lany & Saffran, [2010). However, Reeder, Newport, and Aslin| (2009, Experiment 5) report
successful learning of a related language, (Q)AXB(R). In this language, there are optional Q and
R categories that serve to deconfound co-occurrence regularities from positional regularities (i.e.,
in MNPQ, Ms and Ps are always sentence-initial and Ns and Qs are always sentence-final). Thus,
this work by Reeder et al. suggests that positional regularities may override co-occurrence
regularities in the MNPQ language. Nevertheless, the MNPQ failures are puzzling, given that

computational models suggest that distributional learning is a powerful mechanism.

Of course, studies using artificial languages create learning conditions that differ in many
ways from natural language learning. In the studies described above, people are presented with
impoverished languages in which only co-occurrence information is available, and the question is
whether people can learn the embedded structure under these conditions. The artificial input
contrasts starkly with real input. To name just a few differences, real linguistic input (1) is
absorbed over many years, (2) comes, at least during development, from knowledgeable and
helpful human beings who are physically copresent, (3) exhibits non-uniform distributions, (4)
has complex syntactic structure, (5) contains useful morphological structure, (6) refers to actual
referents, and (7) contains already-known words. The failure to find learning from artificial input
lacking these (and other) features is therefore to be taken with a grain of salt. Modulo issues of
timescale and social interaction, these studies provide evidence against the quite strong
hypothesis that people can learn from purely distributional information. But they do not

adjudicate against weaker hypothesis classes. For example, it is possible that other information



SEMANTIC COHERENCE AND DISTRIBUTIONAL LEARNING 10

sources must be present that synergize with distributional information.

Indeed, including multiple features of natural language in artificial language can lead to
synergistic effects on learning. For instance, in work on segmentation, Kurumada, Meylan, and
Frank| (2013)) found that presenting participants with Zipf-distributed input facilitated
segmentation and |Hay, Pelucchi, Estes, and Saffran (2011) found that presenting participants with
natural language (Italian) containing peaked transitional probabilities facilitated subsequent word
learning, bolstering previous findings that had used artificial languages. In what follows, we
outline some research on MNPQ learning that has adopted the strategy of “naturalizing” artificial
language by introducing correlated information sources. Of course, introducing some naturalistic
features into artificial stimuli does not magically transform them into natural languages. These
“semi-artificial” languages are therefore subject to many of the same concerns as fully artificial
languages. Still, parametrically adding naturalistic features to fully artificial languages can serve

as a useful empirical tool for measuring the impact of different information sources.

Studies suggest that when co-occurrence information is partially or completely correlated
with another cue, MNPQ learning may be psosible. For example, Braine (1987) found successful
MNPQ learning when co-occurrence information is partially correlated with natural gender. In
this experiment, participants acquired an artificial language by learning to name pictures of
referents. In the experimental condition, all pictures of men were labeled by Ms and all pictures of
women were labeled by Ps (though not all Ms referred to men and not all Ps referred to women).
Learning of the co-occurrence regularities was significantly higher in the experimental condition
than in a control condition where natural gender was not correlated with M/P membership.
Though Braine’s experiment combined co-occurrence cues with natural gender, he suggested that
phonological cues might better serve real-world language learners. For instance, Spanish and
Italian speakers might learn grammatical gender categories by taking advantage of the fact that
feminine nouns often end with -a, while masculine nouns often end with -o. More generally,
demonstrations that co-occurrence information can be useful in concert with other information

sources have encouraged researchers to study how disparate sources might be integrated to
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facilitate learning (e.g., Johns & Jones, 2012; Monaghan, Chater, & Christiansen, 2005).

Nearly all of this empirical work has interpreted the results of human experiments with
reference to learning grammatical category. To our knowledge, only one study has examined
word meaning. Recently, Lany and Saffran (2010) investigated Braine’s proposal of correlating
co-occurrence and phonological cues in a study of meaning acquisition. They found that
22-month old infants successfully learned an MNPQ language when co-occurrence was aligned
with the number of syllables in a word (in particular, when N words were disyllabic and Q words
were monosyllabic) but not when the number of syllables was not predictive of N/Q membership.
This suggests that distributional information may play a common role in acquisition of

grammatical category and word meaning, at least for the MNPQ language.

1.3 The current study

In our current work, we add to the literature on distributional learning by exploring a new
information source: semantic coherence. To date, all studies have used the artificial language
learning paradigm, with a vocabulary consisting of all novel words. Thus, at the beginning of the
experiments, learners did not know the meanings of any of the words. Real learners, by contrast,
typically know the meanings of some (if not most) words they hear and such words tend to relate
to a single topic of discourse. Put another way, the language that real learners encounter tends to
have semantic coherence; some words are known and adhere to some semantic organization. We
ask: does semantic coherence facilitate distributional learning?

To explore this possibility, we presented participants with an MNPQ language where
sentences took the form “M and N or “P and Q.” Note that we used the explicit English
conjunction “and” between the two words, which imbued sentences with some semantic content
(i.e., our stimuli were not merely a syntactic ordering). We hypothesized that a sufficient level of
semantic coherence (specifically, a taxonomic coherence where Ms are animals and Ps were
vehicles) would yield successful distributional learning for N and Q words. For instance, hearing

the four sentences:
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1. dog and dax

2. dog and ziv

3. car and wug

4. car and pif

might allow learners to infer that daxes and zivs are similar, as both words co-occur with “dog,”
and that wugs and pifs are similar, as both words co-occur with “car.”

In Experiments 1a and 1b, we tested whether semantic coherence facilitated distributional
learning and whether learners might use distributional information to make inferences about word
meaning. In Experiment 2, we compared semantic coherence to phonological coherence. In
Experiment 3, we compared semantic coherence to a semantic baseline that used known words
that did not adhere to any obvious semantic organization.

Our design takes our experiments out of the realm of purely artificial language learning,
mixing familiar words with novel ones. At the same time, the impoverished learning materials we
provide our participants cannot be taken as a parallel to the richness of natural language. It seems
likely that participants reason about our materials using the same processes as in complex,
artificial language tasks that include explicit semantic content (Braine, 1987)). While artificial (or
partially artificial) languages suitable for use in experiments cannot fully mimic natural language,
they are useful as tools for investigating the relative ease or difficulty of learning from different

kinds of information sources in model systems of this type.

2 Experiment 1a: Semantic Coherence

In all the experiments reported in this paper, we exposed participants to auditory sentences
from an MNPQ language and then assessed learning using three different measures. We refer to
the Ms and Ps as context words and we refer to Ns and Qs as target words. Context words are

found at the beginnings of sentences in our language, while target words are found at the ends of
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the sentences in our language (Table[I)). We systematically varied properties of the context words
and then measured learning of the target words.

In Experiment 1a, we parametrically varied two independent properties of the context
words. First, we varied semantic coherence—the fraction of M/P words obeying a taxonomic
organization (M = animal words, P = vehicle words). Second, as one hallmark of statistical
learning is sensitivity to the amount of evidence observed, we varied the amount of exposure to
the language to measure the efficiency of learning. After exposure to the language, we tested
participants on three measures of MNPQ learning—similarity rating, sentence memory, and a
referent assignment task. The sentence memory task measures whether participants learned the
MNPQ co-occurrence structure. The similarity rating and referent assignment tasks measure
whether participants use this information in judging similarity and assigning referents,
respectively.

In the sentence memory task, participants rated the familiarity of four kinds of sentences:
familiar sentences, novel grammatical sentences, and two kinds of ungrammatical sentences. In
the similarity rating task, participants rated the similarity of pairs of target words. In the referent
assignment task, we provided visual referents for the context words (e.g., “feeb” refers to a cat)
and asked participants to assign the target words to referents (e.g., choose whether “chuv” refers

to a horse or a bicycle).

2.1 Method

2.1.1 Participants

678 Amazon Mechanical Turk (MTurk) workers. Using MTurk’s worker qualifications, we
limited participation to workers located in the United States and with a previous task approval rate
greater than or equal to 90%. We chose MTurk workers as our participants because the number of
experimental conditions required a large number of participants. Work by Buhrmester, Kwang,
and Gosling (2011) and |Crump, McDonnell, and Gureckis| (2013)) suggests that MTurk is a valid

platform for web-based learning experiments.
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2.1.2 Materials

Sentences took the form “M and N” or “P and Q” (Table[I). Note that sentences literally included
the word “and” in the middle. We generated the actual lexical items randomly for each
participant. Ns and Qs were always novel nonsense words and were drawn without replacement
from the set {moke, thite, jiv, pif, dex, wug}. Ms and Ps could be either novel or familiar. Novel
Ms were drawn from {feeb, bim, lup} and novel Ps were drawn from {zabe, vap, chuv}. Familiar
Ms and Ps obeyed a taxonomic organization—familiar Ms were drawn from {hamster, cat, dog}
and familiar Ps were drawn from {car, bus, truck}.

To create the audio files, we input the sentences as “X. and. Y.” (e.g., “car. and. chuv.”,
including periods) into an American English text-to-speech engine using a female Voice The
periods between words introduced substantial pauses ranging in length from 150 to 300 ms;
piloting revealed that without pauses, it was difficult for participants to distinguish the words.
Sentences using only monosyllabic words were around 2 seconds long. Sentences using the sole
disyllabic word, hamster, were around 3 seconds long. The referent assignment task involved
visual referents. For the context words, we used 128x128 pixel images of a cat, dog, hamster, car,
bus, and truck. For the target words, we used 100x100 pixel images of a horse, rabbit, sheep, bear,

goldfish, mouse, boat, van, train, motorcycle, plane, and bicycle. Images are shown in Fig.[2]

2.1.3 Design and Procedure

We parametrically varied coherence. The language for a participant contained either 0/3, 1/3, 2/3,
or 3/3 familiar M and P words each. We also varied the amount of exposure to the
language—participants heard either 56, 126, 196, or 392 sentences. Before starting the
experiment, we asked participants to turn on their speakers and click a button, which played a
spoken English word (“airplane’). We required participants to type the word correctly to

continue. The experiment had four tasks in a fixed order: exposure, similarity, memory, and
3 We programmatically submitted all of our sentences to the text-to-speech web service that powers Google Trans-
late. During our investigation, the set of voices on the web service changed, which required us to synthesize our stimuli

using different software. See also Footnotel?}
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Table 1

The MNPQ language and test items for memory and similarity.

Exposure sentences® Memory items Similarity items
mini mine mpn3 Sentence type Example  Pair type Example
mgomn; Mmgong mgns Familiar my Noy Within-category nq, no
msni Mmgne mgng  Withheld mi Ny Cross-category — n1, 1
PLq1 P1G2  DP1@3 Co-occurrence violation m;y ¢
P2q1  P242  DP2G3 Position violation mi Mo

P31 P3 q2 D3 qs3

# Underlined sentences were withheld from exposure.

referent assignment (we presented memory and referent assignment later because we were
concerned that earlier testing might give opportunities for additional learning). Below, we detail
each of these tasks.

Exposure. Participants listened to sentences from the language. We withheld six
sentences from exposure (Table ), yielding 14 unique sentences in the exposure set. Each
sentence was heard either 4, 9, 14, or 28 times, giving 56, 126, 196, or 392 total trials. We
presented the sentences in random order subject to the constraint that there were no repeated
words between consecutive trials (pilot testing suggested that repeated words between trials
substantially afforded learning). To encourage compliance, participants had to click a button to
hear each sentence.

Similarity. For each pair of words in the union of N and Q, we asked participants to rate
on a 5 point scale how similar they believed the two words to be in meaning. In particular, we
instructed participants to “tell us how similar you think they are in terms of meaning”. This

resulted in within-category ratings (e.g., ny vs. ny) and cross-category ratings (e.g., nq vs. q1). We
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Here are the meanings for some of the words:
feeb dog bus hamster lup truck

FislisaE

Below, click the picture you think is what the word means:
moke jiv wug thite dex pif

Fig. 2. A screenshot of the referent assignment task.

presented the pairs in a fixed pseudorandom order containing no repeated words between
consecutive trials. Though exposure was entirely auditory, we presented these similarity questions
as text (e.g., “How similar are pif «) and thite #) ?"); to facilitate mapping between visual and
spoken word forms, the speaker button next to each word played the spoken word when clickedEl
In two catch trials, we asked participants to press the response button corresponding to the
solution of a simple arithmetic problem. If participants learned the MN and PQ co-occurrence
relationships and used these relationships as a basis for similarity judgments, then we expected
that participants would rate within-category pairs of words as more similar than cross-category
pairs.

Memory. Participants listened to sentences and rated on a 5 point scale how confident

they were that they had heard the sentence during exposure. We tested four types of sentences:

e Familiar sentences heard during exposure.
e Withheld sentences not heard during exposure but conforming to the MNPQ structure.

e Co-occurrence violation sentences of the form MQ and PN.

4 We presented these questions as text because we were concerned that playing auditory questions would further

train participants (furthermore, some of this unintended training would be on non-grammatical sequences).
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e Position violation sentences of the form MM, NN, PP, and QQE]

We presented sentences in random order such that there were no repeated words between
consecutive trials. In two catch trialsE] instead of a sentence from the MNPQ language, we played
an audio instruction (which could not be repeated by participants) to press a specific response
button. If participants learned the MN and PQ co-occurrence relationships, then we expected that
they would rate novel grammatical sentences as more familiar than the co-occurrence violation

sentences.

Referent assignment. 'We provided participants with referents for all of the Ms and Ps and
asked them to choose referents for the Ns and Qs (Fig. [2). At the top of the screen, we displayed
the Ms and Ps in random order and we provided referents by displaying a single image
underneath each word. The M and P referents were either animals (cat, dog, hamster) or vehicles
(car, bus, truck); either Ms were animals and Ps were vehicles, or vice versa. Recall that some
conditions contained familiar M and P words; in these cases, we paired the known words with the
obvious referents (e.g., “dog” was always paired with an image of a dog). Below the M and P
words and their meanings, we displayed a row containing the N and Q words. Under each word,
we displayed a two-alternative referent choice between an animal (the “correct” choice for N
words) and vehicle words (the “correct” choice for Q words); participants made a choice by
clicking on one of the two pictures. If participants learned the MN and PQ co-occurrence
relationships and and used them as a basis for inferences about word meaning, then we expected
that referent assignment scores would reflect a tendency to choose similar referents for words in
the same category. In addition, we hypothesized that, under these circumstances, participants

> We only used position violation sentences that did not repeat the same word twice, e.g., we never presented

myp —my.

% In initial data collection, we did not include catch trials. Let [A/3;B] denote the experimental condition with A/3
coherence and B exposures (e.g., [2/3;196] refers to the 2/3 coherence level with 196 exposures). In [0/3;196], 18 out
of 40 participants did not receive catch trials. In [3/3;56], 30 out of 43 participants did not receive catch trials. In
[3/3;126], 30 out of 40 participants did not receive catch trials. In [3/3;196], 30 out of 40 participants did not receive

catch trials.
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Fig. 3. Mean familiarity ratings for different sentence types in Experiment 1a and 1b. The far

right panel shows results from Experiment 1b.

would pick animals for Ns and vehicles for Ps. This is because Ns consistently co-occurred with
Ms, which we indicated referred to animals, and Qs consistently co-occurred with Ps, which we

indicated referred to vehicles.

2.2 Results and Discussion

We excluded the 72 participants who did not correctly answer all of the catch trials[] We
first present descriptive statistics of the memory task before analyzing the influence of coherence
and exposure on distributional learning as measured by all three tasks. Anonymized data and

analysis scripts are available at https://github.com/longouyang/semantic-coherence.

2.2.1 Descriptive statistics for the memory task

Fig. 3| shows mean familiarity ratings broken down by sentence type, coherence, and exposures.
Within each coherence level, we looked for evidence of a familiarity ordering on sentence types.
For each participant, we computed their mean familiarity rating for each sentence type. Then, at
each coherence level (collapsing across exposure levels), we ran 6 paired-sample t-tests

7 Recall that some participants — mostly in the 3/3 conditions — did not receive catch trials (see Footnote E]) This
does not bias the results in favor of our hypothesis; if anything, this weakens any effect of semantic coherence, as
it introduces noise at the highest level of semantic coherence but not at any other level. Indeed, our results are not

affected by including subjects who had catch trials and failed them.
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comparing mean familiarity ratings across sentence types and corrected for multiple comparisons

using the Holm procedure (Table [BI)). This yielded the following familiarity orderings:

0/3: F>W,C, P
1/3: F>W,C, P
23: F>W>C>P
3/3: W>F>C>P

These familiarity orderings indicate that some learning occurred at every level of coherence. For
example, participants at all levels of coherence rated familiar sentences as more familiar than
position violation sentences. However, only participants at the 2/3 and 3/3 levels distinguished
between withheld and co-occurrence violation sentences. This lends some support to the idea that
positional regularities in MNPQ may be more influential than co-occurrence regularities. It is
interesting that, in the 3/3 condition, withheld sentences were rated significantly higher than
actually familiar sentences. This may be related to prototype-enhancement effects found in

category learning (e.g.,J. D. Smith & Minda, [2002).

2.2.2 Effect of coherence and exposure

For each dependent measure—memory, similarity, and referent assignment—we defined a
within-participant score representing the sensitivity to the co-occurrence regularities in the
language. We scaled all scores to lie in the interval [-1, 1], which allows for the following
interpretation: scores below 0 indicate learning in the incorrect direction (e.g., preferring
co-occurrence violation sentences over withheld sentences), while scores above 0 indicate
learning in the correct direction.

The memory score measured the difference in familiarity ratings for withheld versus
co-occurrence violation sentences. For each participant, we computed their memory score as the
mean rating for withheld sentences (e.g., m—n;) minus their mean rating for novel co-occurrence
violation sentences (e.g., m1—¢q;). Because ratings range from 1 to 5, this difference had a

minimum value of -4 and a maximum value of 4; we divided this difference by 4 to rescale it to
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lie in the interval [-1, 1]. Note that memory score did not include ratings for familiar or

position-violation sentences.

The similarity score measured the difference between similarity ratings for within-category
and cross-category pairs of words on the similarity task. For each participant, we computed their
similarity score as their mean rating for within category pairs (e.g., m;—n,) minus their mean
rating for cross category pairs (e.g., m1—q;). As with the memory scores, this yields a measure

that lies in the interval [-4, 4], which we scaled to [-1, 1].

The referent assignment score measured the total number of correct choices in the referent
assignment task. The lowest score was 0 and the highest possible score was 6. We rescaled this to

the interval [-1, 1] by taking the raw number correct, subtracting 3, and then dividing by 3.

We analyzed the effects of coherence and exposure using linear models. First, we looked
for main effects of coherence on score (i.e., the Condition coefficients in Table[2). Second, as we
were interested in the relationship between amount of exposure and score, we looked for exposure
X coherence interactions. A significant interaction (e.g., the E x C coefficients in Table @) would
indicate a difference in how efficiently the statistical learning process makes use of evidence at
different coherence levels. For all scores, we coded coherence as a categorical variable and
analyzed the data using a regression which modeled the mean score in a participant group (e.g.,
3/3-56) as an interactive function of the number of exposures (e.g., 56) times the condition (e.g.,
full coherence). In other words, our regression equation was score ~ exposures X condition.

Results are shown in Fig. [}

To examine the differences between the different coherence levels, we used Helmert
contrasts analyzing (i) the difference between the 1/3 and 0/3 conditions, (ii) the difference
between the 2/3 condition and the 0/3 and 1/3 conditions combined, and (iii) the difference
between the 3/3 condition and the 0/3, 1/3, and 2/3 conditions combined. Results of these
analyses are shown in Table 2] Before detailing the results for each measure, we will first state the
two broad patterns of results. First, learning was highest in 3/3 condition. Second, we found the

strongest evidence of statistical efficiency (i.e., sensitivity to the amount of exposure) in the 3/3
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referent assignment). Scores ranged from -1 to 1. Data points show condition means, error bars

show bootstrapped 95% ClIs, and dashed lines show the best-fitting linear regression.

condition.

Table 2

Regression model for Experiment la

Predictor

£ Std Error t P
Memory: R? =0.18, F'(7,598) = 19.26
Intercept 0.0432 0.019 226 <0.05%*
Condition: 1/3 — (0/3) 0.0043 0.027 0.15 0.874
Condition: 2/3 —(0/3,1/3) 0.0269 0.015 1.78 0.074
Condition: 3/3 —(0/3,1/3,2/3)  0.0396 0.010 3.62 <0.001%*
Exposures 0.2215 0.084 263 <0.01%*
E x C: 1/3-(0/3) -0.0012 0.121 -0.00  0.992
E x C:2/3-(0/3,1/3) -0.0050 0.067 -0.07 0.939
E x C: 3/3 -(0/3,1/3,2/3) 0.1294 0.048 2.65 <0.01%
Similarity: R*=0.12, F'(7,598) = 11.85
Intercept 0.0536 0.019 276 <0.01*
Condition: 1/3 — (0/3) -0.0085 0.028 -0.30 0.763
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Condition: 2/3 - (0/3,1/3) 0.0237 0.015 154 0.123
Condition: 3/3 —(0/3,1/3,2/3)  0.0239 0.011 213 <0.05%

Exposures 0.1407 0.085 1.63 0.101
E x C: 1/3-(0/3) 0.0517 0.124 041 0.676
E x C:2/3-(0/3,1/3) 0.0258 0.068 037 0.705
E x C: 3/3 -(0/3,1/3,2/3) 0.1320 0.049 2.65 <0.01%

Referent assignment: % = 0.07, F'(7, 594) = 6.70

Intercept 0.1136 0.036 3.10 <0.005*
Condition: 1/3 — (0/3) 0.0629 0.053 1.17 0.240
Condition: 2/3 — (0/3,1/3) 0.0689 0.028 238 <0.05%

Condition: 3/3 —(0/3,1/3,2/3)  0.0397 0.021 1.88 0.059

Exposures 0.4434 0.161 274 <0.01%*
E x C: 1/3-(0/3) -0.0784 0.233 -0.33  0.736
E x C:2/3-(0/3,1/3) -0.1421 0.128 -1.10  0.268
E x C: 3/3 -(0/3,1/3,2/3) 0.1201 0.094 127 0.202

Note. For readability, we divided the exposure values by 1,000.

2.2.3 Task results

We report performance on each of the three tasks separately.

Memory. More exposure led to higher memory scores, as there was a main effect of
exposure. Higher coherence also led to higher memory scores; 3/3 scores were significantly
higher than scores from the rest of the conditions combined.

Additionally, the effect of exposures on memory score was significantly higher in 3/3 than
in the other conditions combined (i.e., there was a significant exposure x coherence interaction),
suggesting greater efficiency of statistical learning in 3/3. Thus, more semantically coherent
linguistic input (1) bolstered memory for the MN and PQ co-occurrence regularities and (2)

increased the efficiency of the statistical learning process responsible for learning those
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regularities, at least in the 3/3 condition.

Similarity. Similarity scores were higher in the 3/3 condition than the other conditions
combined. In addition, the effect of exposures on score was significantly higher in the 3/3
condition than in the other conditions combined, as there was a significant exposure X coherence
interaction. Thus, more coherent linguistic input (1) increased the distinction between
within-category and cross-category pairs of words and (2) increased the efficiency of the
statistical learning of such distinctions, at least in the 3/3 condition.

Referent assignment. 2/3 scores were significantly higher than 0/3 and 1/3 scores
combined. 3/3 scores were marginally higher than the rest of the scores combined, possibly
because 3/3 coherence and 2/3 coherence may confer comparable advantages on this task. We
also computed this model using coherence as a continuous variable; the continuous coherence
regressor significantly predicted increases in score, 5 = 0.09, £(619) = 2.87, p < 0.005,
suggesting that parametrically increasing coherence results in parametric increases in referent
assignment score. None of the interaction terms reached significance, indicating that the amount
of exposure to the language and greater coherence independently increased the ability to assign N

and Q words to the correct referents.

2.2.4 Summary

In Experiment 1a, we found that semantic coherence (1) increased ability to distinguish novel
grammatical sentences from sentences violating co-occurrence regularities in the memory task,
(2) sharpened sensitivity to category boundaries based on the co-occurrence regularities in the
similarity task, and (3) increased inductive bias in associating target words with referents.

However, one possible issue with our experiments is that the context words were not the
only known words. In particular, we linked these words using the conjuctive predicate “and.”
Arguments to “and” typically belong to the same syntactic category and may often share semantic
category membership as well Benor and Levy (2006). An English speaker could use knowledge
of this regularity to infer probable semantic categories for target words. For instance, in the

phrase “dog and dax,” she could infer that daxes belong to a semantic category that is similar to
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dogs. Indeed, previous studies have shown that people use selectional restrictions of predicates to
constrain inferences about semantic properties of novel arguments (Altmann & Kamide, [1999;
Ko6hne & Crocker, 2010)]?] This raises the question: do our results hinge on the use of the familiar
connective “and”? Or would we also observe these results using a nonce connective? In

Experiment 1b, we investigate this question.

3 Experiment 1b: Semantic coherence with a nonce connective

In Experiment 1b, we investigated whether the familiar “and” connective drove the effects
of coherence that we found in Experiment 1a. We modified the materials from the 3/3 coherence

condition, replacing “and” with a nonce connective, “tezz.”

3.1 Method

3.1.1 Participants
163 MTurk workers.
3.2 Materials

The materials were identical to the 3/3 condition of Experiment la, but with “and” replaced

with “tezz.”

3.3 Design and Procedure

The design and procedure were identical to that of Experiment 1a.

3.4 Results and Discussion

We excluded 15 subjects who did not pass all trials.

8We thank an anonymous reviewer for this observation.
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Table 3

Regression model from Experiment 1b

Predictor £ Std Error ¢t D

Memory R? = 0.03, F(1, 146) = 4.60
Intercept  0.16 0.03 4.42 <0.001*
Exposures 0.44 0.20 2.14  <0.05%*

Similarity R? = 0.03, F(1, 146) = 5.61
Intercept  0.10 0.03 260 <0.05%
Exposures 0.51 0.21 2.37 <0.05%

Referent assignment R? = 0.04, F(1, 144) = 7.04
Intercept  0.24 0.06 4.00 <0.001*
Exposures 0.94 0.35 265 <0.01%*

Note. For interpretability of the intercept, we subtracted

the lowest level of exposure from all exposure values. For

readability, we divided exposure levels by 1,000.

3.4.1 Descriptive statistics for the memory task

Fig. 3] shows mean familiarity ratings broken down by sentence type, coherence, and exposures.
As in Experiment 1a, we used Holm-corrected pairwise t-tests to compute a familiarity ordering

on sentence types (Table [BI)). The ordering for the nonce connective 3/3 condition was:
F=W)>C>P

Thus, participants who saw a version of the 3/3 language with “and” replaced by “tezz”
successfully distinguished between novel grammatical (i.e., withheld) sentences and
ungrammatical (i.e., co-occurrence violation) sentences. If results of Experiment 1a hinged on the
use of the “and” connective, participants should not have been able to distinguish between
withheld and co-occurrence violation sentences.

It is informative to compare this nonce connective ordering with the orderings from the 2/3

and 3/3 conditions of Experiment 1a:
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2/3: F>W>C>P
Nonce: F~W)>C>P

3/3: W>F>C>P

In 2/3, familiar sentences were rated as more familiar than withheld grammatical sentences,
whereas the opposite was true in 3/3. Our nonce connective 3/3 condition appears to be in
between these two cases; the difference in ratings between familiar and withheld sentences was

not statistically significant.

3.4.2 Task results

Similar to Experiment 1a, we performed a regression analyzing score on each task as a function
of exposures. Note that in Experiment 1a, we also included coherence as a predictor but we did
not include it here as there was only a single coherence level — 3/3.

Regression results are shown in Table [3] Note that in our model, we subtracted 56 from all
exposure levels so that the intercept could be interpreted as performance at the lowest exposure
level. For all three tasks, the intercept was significant, indicating that participants performed
above chance at the lowest exposure level. Additionally, for all three tasks, there was evidence of
statistical learning, as the effect of exposure level was significant—more exposures were

associated with higher task scores.

3.5 Conclusion

Our analyses indicate that the results of Experiment 1a were not entirely driven by the
presence of the “and” connective. Even with the nonce connective “tezz,” we observed the same
hallmarks of learning: distinguishing between withheld grammatical sentences and co-occurrence
violation sentences and sensitivity to the amount of exposure. It is possible that “and” further
facilitates learning beyond the effects of semantic coherence. However, our results here
demonstrate that the presence of a known connective is not necessary for distributional learning.

Thus, taken together, Experiments 1a and 1b suggest that semantic coherence facilitates
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distributional learning.

The context words that participants heard in Experiment 1a and 1b included words with
familiar meanings that were organized into coherent categories. Would it be enough to merely
have familiar words without coherence? Or coherent words that are unfamiliar? How does the
effect of semantic coherence depend on each? In Experiment 2 we test for the effect of familiar
meaning and in Experiment 3, we test for the effect of coherence. In Experiment 2, we remove
familiar meaning by exposing learners to languages with phonological, as opposed to semantic,
coherence. In Experiment 3, we remove coherence by exposing learners to languages with

context words that are familiar but do not adhere to any obvious semantic organization.

4 Experiment 2: Phonological coherence

In Experiment 2, we investigated whether learners could learn the language used in
Experiment 1a when the context words (Ms and Ps) exhibited phonological, rather than semantic,
coherence. It is worth emphasizing that we manipulated phonological coherence in the context
words, whereas previous work (e.g., Lany & Saffran, |[2010) has manipulated phonological
coherence of the target words. This previous work has shown that learning is facilitated when
target words have both distributional and phonological regularities. By contrast, we are interested
in how distributional learning for one category of words varies as a function of other words in the
linguistic environment.

We tested three types of coherence: onset, rime, and syllable count. We selected these kinds
of coherence because work in other areas suggests that these kinds of coherence may reliably
occur in natural language or facilitate distributional learning when applied to target words. Onset
coherence might facilitate learning due to sound symbolism (e.g., words that start with g/ have
similar meanings: glimmer, glow, gleam). Rime coherence can occur in languages that require
gender-marking agreement between nouns and verbs. Finally, syllable count coherence has been
shown to facilitate learning when applied to target words (Lany & Saffran, 2010). Thus, we

investigated it to determine whether it also facilitates learning when applied to context words.
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4.1 Method

4.1.1 Participants

530 MTurk workers.

4.1.2 Materials

The three types of phonological coherenceﬂ were:

e Onset. Ms all started with one consonant cluster (pladge, plaaf, plab) and Ps all started with

another (zof, zawd, zawsh).

e Rime. Ms all ended with one vowel (calo, pawmo, marfo) and Ps all ended with another

(zaygee, kaisee, tetchee).

o Syllable count. Ms were disyllabic (coomo, fengle, kaisee) and Ps were monosyllabic

(gope, jic, skeege).

4.1.3 Design and Procedure

The design and procedure were identical to that of Experiment 1a.

4.2 Results and Discussion

We discarded the 51 participants who did not pass all the catch trials. Results are graphed in

Fig. [0]
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Fig. 5. Mean familiarity ratings for different sentence types in Experiments 2 and 3. For

comparison, we also include the 3/3 coherence condition from Experiment 1a.

4.2.1 Descriptive statistics for the memory task

Fig. [5| shows mean familiarity ratings broken down by sentence type, coherence, and exposures.
As in previous analyses, we computed a familiarity ordering on sentence types within each
phonological coherence condition using paired sample t-tests (Table BI):

Onset: F~W F>C,P (W=xOC>P

Rime: F~W F>C,P (W=x=O>P

Syllable count: F> (W ~C)>P
Participants in these conditions all failed to distinguish between withheld and co-occurrence

violation sentences; they exhibited some learning of the language but not of the co-occurrence

regularities.

4.2.2 Effects of condition and exposure

9 The stimuli for the rime and syllable count conditions differ from those in the rest of our conditions. For the rest of
the conditions, we used a text-to-speech web service provided by Google to generate the audio stimuli (see Footnote
[B) for the bulk of the conditions. However, the available voices on this service changed during our experiment.
Thus, we generated new stimuli for the rime and syllable count conditions using commercially available software,
NaturalReader 10. To ensure that the old and new stimuli were comparable, we performed a partial replication of
Experiment 1a using the new synthesis engine; the difference old and new stimuli did not appear to make a substantial

difference. See Appendix EI for comparisons.
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referent assignment). Scores ranged from -1 to 1. Points show condition means, error bars show

95% Cls, and dashed lines show the best-fitting linear trend. For comparison, we also include the

3/3 coherence condition from Experiment 1a.

Table 4

Regression model for Experiments 2 and 3

Predictor £ Std Error t P
Memory: % =0.01, F'(9, 756) = 0.89

Intercept -0.0277 0.028 -0.98 0.322
Condition: Onset — 0/3 0.0550 0.038 142 0.153
Condition: Rime — 0/3 0.0578 0.036 1.59 0.111
Condition: Syllable count — 0/3 0.0283 0.039 0.72 0.469
Condition: Semantic baseline — 0/3 -0.0016 0.038 -0.04 0.966
Exposures 0.0984 0.121  0.80 0.419
E x C: Onset — 0/3 -0.0686 0.171 -0.39 0.689
E x C: Rime - 0/3 -0.1713 0.164 -1.04 0.297
E x C: Syllable count — 0/3 -0.0324 0.169 -0.19 0.848
E x C: Semantic baseline — 0/3 0.0667 0.165 040 0.687

Similarity: R% =0.02, F'(9, 756) =2.10
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Intercept 0.0146 0.026 0.56 0.573
Condition: Onset — 0/3 -0.0054 0.035 -0.15 0.878
Condition: Rime — 0/3 -0.0111 0.033 -0.33 0.740
Condition: Syllable count — 0/3 -0.0487 0.036 -1.33 0.180

Condition: Semantic baseline — 0/3  -0.0060 0.035 -0.16 0.866

Exposures -0.0688 0.113 -0.60 0.542
E x C: Onset — 0/3 -0.0847 0.159 -0.53 0.595
E x C: Rime — 0/3 0.2168 0.152 142 0.155
E x C: Syllable count — 0/3 0.3152 0.157 199 <0.05*
E x C: Semantic baseline — 0/3 0.1662 0.153 1.08 0.279

Referent assignment: 2 =0.01, (9, 752) = 1.42

Intercept -0.0580 0.069 -0.83 0.404
Condition: Onset — 0/3 0.1804 0.095 1.88 0.059
Condition: Rime — 0/3 0.1010 0.089 1.12 0.261
Condition: Syllable count — 0/3 0.0218 0.097 0.22 0.821

Condition: Semantic baseline —0/3  0.0880 0.096 091 0.360

Exposures 0.5439 0.301 1.80 0.071
E x C: Onset — 0/3 -0.6143 0.425 -1.44 0.148
E x C: Rime — 0/3 -0.3114 0.406 -0.76 0.443
E x C: Syllable count — 0/3 -0.0351 0.420 -0.08 0.933
E x C: Semantic baseline — 0/3 -0.7207 0.409 -1.76 0.078

Note. For readability, we divided exposure values by 1000.

Using a regression model with main effects of exposure and condition and an exposure X
condition interaction, we compared each phonological condition with the 0/3 condition of

Experiment la using a regression model (Table [).
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Memory. There was no effect of exposure or condition—none of the phonological
condition scores were significantly different from 0/3 scores. None of the exposure by condition

interaction terms were significant.

Similarity. Again, we found no main effect of exposure or condition. One interaction term
was significant: there appeared to be greater efficiency of statistical learning in the syllable count

condition than in the 0/3 condition.

Referent assignment. Again, we found no main effect of exposure or condition. None of

the exposure by condition interaction terms were significant.

In sum, with one exception, participants in all three phonological conditions appeared not to
have acquired separate N and Q categories; phonological coherence was virtually
indistinguishable from 0/3 coherence in terms of facilitating MNPQ learning. The one exception
is that participants in the onset coherence condition were able to distinguish withheld from
co-occurrence violation sentences, matching 2/3 participants’ performance in this regard.
However, unlike 2/3 coherence, onset coherence did not appear to confer benefits in the similarity
or referent assignment tasks. Thus, this broad pattern of results suggests that the mere presence of
some kind of coherence in the context words is not what drives the effects of semantic coherence.
In Experiment 3, we consider whether the mere presence of familiar words (semantic baseline)

aids MNPQ learning.

S Experiment 3: Semantic baseline

In Experiment 1a, Ms and Ps were all familiar words obeying a taxonomic organization. In
Experiment 3, we explored a language with familiar words but no semantic organization—that is,
whether a semantic baseline language facilitates distributional learning. We might expect this
baseline condition to facilitate learning due to lower memory demands—known words tax the

memory system less, which might free learners to identify co-occurrence regularities.
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5.1 Methods

5.1.1 Participants

162 MTurk workers. Note that there were many fewer participants in Experiment 3 because there
was only one condition, compared to four conditions in Experiment 1a and three conditions in

Experiment 2.

5.1.2 Materials

In the semantic baseline language, the specific M and P words were drawn randomly for each
participant from the pool {shelf, glove, rain, leash, card, ball}. In the referent assignment task,
these known words were paired with images of the obvious referents (e.g., card with a picture of
a card). Compared to the context words in Experiment 1a, these words are fairly well matched in

frequency (see Table [5)).

5.1.3 Design and procedure
The design and procedure were identical to that of Experiment 1a.
5.2 Results and Discussion

We discarded the 21 participants who did not pass all the catch trials.

5.2.1 Descriptive statistics of the memory task

As in Experiment 1a, we computed an ordering on the sentence types in the memory task:
F>W~C>P

(see Table[B1)). This indicates that participants were able to learn some regularities in the

language, but not the co-occurrence regularities.

5.2.2 Effect of exposure

Results are graphed in Fig. [6] See Table [ for regression results.
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Table 5

Context word frequencies from Experiments I and 3

Word Frequency (%) Experiment

Car 0.0091 1
Dog 0.0042 1
Card 0.0035 3
Ball 0.0035 3
Rain 0.0030 3
Bus 0.0026 1
Cat 0.0021 1
Truck 0.0017 1
Shelf 0.00094 3
Glove 0.00029 3
Leash 0.00015 3
Hamster 0.000099 1

Note. Frequencies were retrieved from Google

N-grams data for the year 1999.

Memory. Baseline scores were not significantly different from 0/3 scores and baseline

efficiency was not significantly different from 0/3 efficiency.

Similarity. Baseline scores were not significantly different from 0/3 scores and baseline

efficiency was not significantly different from 0/3 efficiency.

Referent assignment. Baseline scores were not significantly different from 0/3 scores and
baseline efficiency was not significantly different from 0/3 efficiency.

Apparently, the baseline input appeared to have provided no benefit compared to the novel
words of the 0/3 condition, suggesting that the presence of known words by itself does not aid

MNPQ learning.



SEMANTIC COHERENCE AND DISTRIBUTIONAL LEARNING 35

6 General Discussion

Can people learn about words from co-occurrence statistics? Previous work on
distributional learning based on co-occurrence presented a paradox: While computational models
suggest that distributional statistics per se are a powerful source of information, experiments with
humans show consistent failures without additional correlated features. Our experiments suggest
a partial resolution. For people, distributional learning is facilitated by semantic coherence:
Knowing that Alice associated with X and Y tells us something about Alice only if X and Y are
already meaningful and meaningfully related to one another. Removing either the meanings of the
individuals or the coherence of the relationship between them removes the facilitation.

What is the mechanism by which semantic coherence facilitates learning? Perhaps learners
use semantic coherence to infer the topic of discourse and then tag novel words with these topics.
For example, in the highest semantic coherence condition of our experiments, participants may
have learned that the topic of discourse is either animal-related or vehicle-related and then tracked
co-occurrence between these topics and novel words (Frank, Tenenbaum, & Fernald, [2013)). Such
a proposal is congruent with the “preferential acquisition” idea of Hills and colleagues (2010;
2009)), in which the easiest words to learn are those that connect well with others in the learning
environment.

Our finding that phonological coherence does not facilitate learning may at first appear at
odds with experiments that have reached the opposite conclusion (Frigo & McDonald, 1998}
Lany & Saftfran, 2010; Monaghan et al., 2005). But previous work has applied phonological
regularities to the target words (the words that experimenters measure learning for). In contrast, in
order to permit comparison with the semantic coherence conditions, we applied the regularities to
the context words (the words that co-occurred with the target words). In other words, previous
experiments used target coherence, while we used context coherence. In our experiment, the
target categories themselves did not have phonological regularity but they reliably co-occurred
with context categories that did. We speculate that this subtle but substantial difference explains

the different patterns we observed.
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An additional way that our work contrasts with prior artificial language learning work is
that in our tasks participants may have conceptualized their task as acquiring new words in a
language they already know (English), whereas prior studies with purely artificial stimuli may
have encouraged participants to conceptualize their task as acquiring an entirely new language.
Thus, comparing our results with purely artificial experiments is only possible to the extent that
the learning mechanisms in these two cases (extending a familiar language versus acquiring a new

language) are similar.

6.1 Limitations and Future Directions

The limitations of our approach may serve as inspiration for future work. First, we explored
a single artificial language, MNPQ, because past research has shown that it is largely resistant to
distributional learning. While less is known about other languages, Reeder et al. (2009) found
successful distributional learning for the (Q)AXB(R) language, which fixes a positional confound
in MNPQ (Ms and Ps are always sentence-initial and Ns and Qs are always sentence-final),
suggesting that learning is sensitive to the language structure. How do variations across language
structure interact with factors like semantic and phonological coherence?

Second, we investigated a single type of semantic coherence, where context words fell into
two different taxonomic categories, and a single syntactico-semantic construction that biases
interpretation towards concrete nouns (e.g., “‘cat and wug”). Although Experiment 1b speaks
against the interpretation that the predicate “and” was responsible for our results, nevertheless
these choices likely affected the magnitude of the effects we observed. While the simplicity and
transparency of our semantic categories likely facilitated learning, our use of concrete noun
targets might even have understated the effects of coherence. Distributional learning through
semantic coherence might be especially useful for words like verbs and adjectives (Redington et
al.,|1998), where referential grounding provides less information about meaning (Gleitman,

1990).

Finally, while our study addressed one shortcoming of much artificial language
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research—the lack of semantic grounding—it is still congruent with other artificial language
research in scale (6 words in a single exposure session). Small-scale experiments do not allow
strong inferences about the importance of different factors in lexical learning (Frank et al., 2013
Romberg & Saffran, 2010). Moving forward, we believe that a mixture of computational analyses
and larger-scale experiments are necessary to understand the roles that semantic coherence and

distributional learning play in language learning.

6.2 Conclusions

Since Firth’s edict that we shall know a word “by the company it keeps,” two lines of
research have yielded apparently conflicting results. Although computational models suggest that
distributional information is a powerful information source, artificial language learning
experiments have suggested a more dubious outlook. Our results here may help to close this gap
between the experimental and the computational. On the basis of our findings, we suggest a small

modification to Firth’s maxim: You shall know a word if you know the company it keeps.
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Appendix A
Old versus new stimuli comparison
We performed a partial replication of Experiment 1a with the new stimuli. We collected data in

four out of the sixteen experimental conditions and the results mirror those found with the old

stimuli:
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0.75 -
0.50 -
% J ______ { Memory
0.25 - JI: e }___I —————
0004 777770 5 ’{’___{____{ __________ ;
1.00
0.757 Coherence
. E=
o . } Similarity
No.25- /& I __I____I ______ 1/3
- T 4 -- 0/3
0.004 - ----- 1 R Rl SEEET TN i
1.00
0.75 -
T — -
0.50 . & ) l_ _o--" l Referent
L7 T _o-=m7" _ | assignment
0254 | .° S| |
______ i Ij
0.00 - T_—T"’
I I I I I I I I
56 126 196 392 56 126 196 392
Exposures

Fig. Al. Old versus new stimuli
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Appendix B
t-tests for familiarity orderings in the memory task
Table B1
p values (adjusted using the Holm procedure) for paired-sample t-tests of familiarity ratings for
(F)amiliar, (W)ithheld, (C)o-occurrence violation, and (P )osition violation sentence types in

Experiments la, 1b, 2, and 3.

0/3 coherence: df = 145 1/3 coherence: df = 148 2/3 coherence: df = 159
F W C F W C F W C
w | * W | s W | e
C |* |058 C | *= | 0.98 C | s | e
P | % | 025 | 0.14 P | ®#% | 0.07 | 0.07 P | i | e |
3/3 coherence: df = 150 Nonce connective: df = 147 Onset: df = 148
F A\ C F A\ C F w C
W | k* W | 0.56 W | 0.055
C | s | e C | w | s C | == | 0055
P | s | s | s P | s | s | s P | e | s | s
Rime: df = 184 Syllable count: df = 140  Semantic baseline: df = 144
F A\ C F W | C F W C
W | 0.16 W | #* W | sk
C | ** 0.17 C | #* 1 04 C | *¥* 1 0.83
P | s | s | s P | o | ww | s P | s | s | s

#p<0.05 F:p<00l  F* p<0.001



	Abstract
	Semantic coherence facilitates distributional learning
	Introduction
	Computational evidence for distributional learning
	A puzzle: the MNPQ language
	The current study

	Experiment 1a: Semantic Coherence
	Method
	Participants
	Materials
	Design and Procedure

	Results and Discussion
	Descriptive statistics for the memory task
	Effect of coherence and exposure
	Task results
	Summary


	Experiment 1b: Semantic coherence with a nonce connective
	Method
	Participants

	Materials
	Design and Procedure
	Results and Discussion
	Descriptive statistics for the memory task
	Task results

	Conclusion

	Experiment 2: Phonological coherence
	Method
	Participants
	Materials
	Design and Procedure

	Results and Discussion
	Descriptive statistics for the memory task
	Effects of condition and exposure


	Experiment 3: Semantic baseline
	Methods
	Participants
	Materials
	Design and procedure

	Results and Discussion
	Descriptive statistics of the memory task
	Effect of exposure


	General Discussion
	Limitations and Future Directions
	Conclusions

	References

