
Support and influence analysis for visualizing
posteriors of probabilistic programs

1. Introduction
A common way to interpret the results of any computational model
is to visualize its output. For probabilistic programming, this often
means visualizing a posterior probability distribution. The webppl
language has a visualization library called webppl-viz that facil-
itates this process. A useful feature of webppl-viz is that it does
some amount of automatic visualization—the user simply passes in
the posterior they wish to inspect and the library tries to construct
a useful visual representation of it. For instance, consider this pos-
terior:

var dist = Infer(
{method: 'MCMC', samples: 1000} ,
function () {

var b = flip (0.7)
var m = gaussian(0, 1)
var y = gaussian(m, b ? 4 : 2)
condition(y > 0.3)
return {b: b, m: m}

});

We visualize it by calling viz(dist), which gives us this picture:

This is a reasonable choice. There are two density curves for m—
an orange curve for when b is true, an blue curve for when b is
false. webppl-viz often produces helpful graphs but, as we will
see, it can also produce graphs with obvious flaws. One reason
for this is that webppl-viz defines a limited set of variable types
for visualization and it infers what the variable types in a posterior
sample are using heuristics. Another issue is that webppl-viz does

[Copyright notice will appear here once ’preprint’ option is removed.]

not scale well with the number of variables in a posterior. There are
only a handful of ways to visually encode data, and webppl-viz
gives up if the dimensionality of the posterior exceeds the number
of available visual channels. In this article, I argue that methods
from programming languages research suggest solutions to these
two problems.

2. Richer types through support analysis
A popular typology in visualization research distinguishes between
three kinds of variables: nominal (e.g., Coke vs. Pepsi vs. Sprite),
ordinal (terrible vs. neutral vs. excellent), and quantitative (e.g, real
numbers). webppl-viz makes visualization choices automatically
by mapping components of the posterior to these variable types and
then using principles from the psychology of graph perception to
make aesthetic choices, e.g., size is a bad way of showing ordinal
data because it communicates relative magnitude information that
doesn’t actually exist in the raw data (see Mackinlay 1986 for
more).

Currently, webppl-viz heuristically infers the types of compo-
nents in the posterior. If a component does not contain all numbers,
it is assumed to be nominal. If a component contains numbers that
are all integers, it is assumed to be ordinal. If a component con-
tains numbers that are not all integers, it is assumed to be quanti-
tative. These heuristics are useful but there is much room for im-
provement. For example, consider this model, which just forward-
samples from a regular grid containing non-integer values:

viz(Infer(
{method: 'MCMC', samples: 1000} ,
function () {

var x = uniformDraw ([0, 0.5, 1, 1.5, 2])
return {x: x}

}))

We get a misleading result:

1 2016/11/1



The presence of non-integer numbers in the posterior sample
has lead webppl-viz to assume that x is a real-valued variable
and then depict it using a density plot. The combination of type
choice and plot choice is surprisingly bad here. Standard non-
parametric density estimation performs poorly for multimodal non-
smooth distributions, which is exactly the sort of posterior we have.
Visually, the most likely values in the plot—0.25, 0.75, 1.25, and
1.75—are not even in the support of the distribution we’re drawing
from!

How could we do better? Looking at the structure of the pro-
gram, we can tell that x can only take one of five values and
that a better plot would be simply a histogram over these values.
More generally, the nominal-ordinal-quantitative typology is too
coarse—we need a more precise notion of type. A natural candi-
date is the set of values that a variable could take—its support. And
mechanically calculating this support information will have to do
much more than simple heuristics—we will have to do some ab-
stract interpretation.

To make variable supports available to webppl-viz, I modified
webppl, adding a lightweight abstract interpretation mechanism
that operates in tandem with the concrete program evaluation by
tagging concrete values with abstract states. I manually declared
the supports for base distributions; sampling from one of these
distributions returns a value that is tagged with a support:

var x = exponential ({a: 3});
x; // => some random value
x.support; // => {lower: 0, upper: Infinity}

To make sure that variables derived from random values carry
appropriately updated supports, I modified webppl’s arithmetic
functions to merge supports. Thus, a variable defined as the sum
of two random variables has the appropriate tags:

var a = uniformDraw ([0.1, 0.3, 0.7]),
b = uniformDraw ([10, 20]),
c = a + b; // support is [10.1, 10.3, 10.7,

// 20.1, 20.3, 20.7]

3. Showing more variables with influence analysis
The number of visual dimensions that we can use to represent
information is limited—position in two dimensions, color, size,
shape, and perhaps a handful more. So the dimensionality of the
posterior can easily outstrip our ability to visualize. For instance,
visualizing a 4-dimensional surface is not possible without omitting
or severely summarizing certain components.

However, the special structure of probability distributions can
help. In particular, if two components are independent, then there’s
no need to try to show a single graph of their joint distribution.
Instead, we can show the two graphs of their marginals, as these
imply the joint distribution in the case of independence. So while a
4-dimensional surface might be in general impossible to visualize,
a 4-d posterior distribution with some independence structure in the
components might be possible.

I take the following approach to computing the independence
structure of the posterior. First, I statically analyze the source code
of a model to construct an influence graph between the random
variables in the posterior. In particular, a variable x is marked as di-
rectly depending on another variable y if x’s declaration references
y.1 I then use the Bayes ball algorithm (Shachter 1998) to factorize

1 This simple approach largely suffices, as webppl is a (mostly) static sin-
gle assignment language. webppl does, however, provide a facility for mu-
tation: the globalStore variable. This simple influence analysis would
fail on models that where dependence between variables is mediated by
globalStore contents. Such cases would require a more complete ap-
proach, such as CFA2.

the posterior, i.e., to partition the posterior components into cliques
(subsets of components that are independent of all other subsets).
It is then possible to call viz() on each clique.

4. Future directions
Currently, support analysis is implemented only for numeric values.
But a primary selling point of probabilistic programming is that
it enables probabilistic modeling over richer representations, like
strings, trees, and networks. Accommodating such objects will
require designing efficient support representations. For influence
analysis, we might be able to further visualize higher dimensional
data by relaxing from perfect to approximate independence.

Another interesting aspect to explore is how the program anal-
ysis techniques used for the task of posterior visualization relate to
and interact with program analysis for other tasks (e.g., improving
inference through dead code elimination, program transformations,
or insertion of heuristic factors).

References
J. Mackinlay. Automating the design of graphical presentations of relational

information. In TOG ’86, April 1986.
R. D. Shachter. Bayes-ball: Rational Pastime (for Determining Irrelevance

and Requisite Information in Belief Networks and Influence Diagrams)
In UAI ’98, July 1998.

2 2016/11/1


